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1. SUMMARY 

1.1 Purpose 

This report presents the results of the second six months of a 

research program directed towards the application of adaptive learning 

systems to aiding in dynamic decision processes. The research goals of 

this program are as follows: 

a. Establish a mathematical model and a system structure for 

on-line adaptive computer modeling and <.iding in dynamic 

decision making. 

b. Experimentally determine the factors which influence optimal 

decision aiding in complex, realistic task situations. 

c. Move toward full automation of routine multivariate, judgmental 

decision making. 

1.2 Problem and Methodology 

In dealing with real world problems, decision makers (DM) must 

frequently respond to dynamic input environments of multivariate data. 

These data come from sources of differing reliabilities and costs and 

have different values in the achievement of decision objectives. 

Decisions are made sequentially, and their consequences are likely to 

affect future choices. The ability of the operator to develop a 

satisfactory strategy for relating the poorly defined inputs to his 

successive decisions is a major determinate of success. Learning may be 

a sign-'ficant part of this process, particularly 1n non-stationary de- 

cision environments. 

Military examples of such situations range from the global to the 

highly specific. The> include DM responses to broad range and regional 

intelligence reports, to local command and control needs (such as 

1-1 
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deposition of air, sea, and ground forces), to photo image interpretation, 

and to noisy signals characteristic of sonar and radar returns-    Numerous 

examples occur outside of the military as well.    Besides national 

intelligence, these include crime prevention, air and highway traffic 

control, population and environmental  planning, and that quintessential 

decision problem — the stock market. 

The approach to dynamic decision making under development at 

Perceptrcnics involves the concept of a trainable parallel decision 

maker model which continuously "tracks" the DM's decision responses in 

real time, learns his decision strategy, and aids or automates the decision 

process as the situation requires.    In effect, the experienced decision 

maker "shows" the computer how to optimize in his own terms.    The machine 

then continues the process and, in turn, aids the DM or performs his role 

autonomously. 

The ADDAM (Adaptive Dynamic Decision Aiding Mechanism) System 

represents an application of this concept. 

The purpose of the ADDAM System is to provide a flexible vehicle for 

research in areas of dynamic decision theory, adaptive decision models, 

dynamic utility estimation, and man/computer decision making.    The system 

combines the following elements: 

o Dynamic Decision Environment Generator 

o Simulated Intelligence Analysis Report 

o Decision Environment Display 

o Adaptive Decision Model 

o Dynamic Utility Estimator 

o Decision Aiding Based on Utility Feedback 

o Minicomputer Implementation 

1-2 i 
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The decision task of th; operator is to deploy sensors of varying 

object sensitivity, reliability, and cost to obtain intelligence informa- 

tion about the behavior of a simulated fishing fleet. The task sequence 

consists of deploying sensors, receiving sensor outputs, reporting fleet 

status, receiving an intelligence report (probabilities of movements, 

based upon the status report), receiving aiding information (at this time, 

limited to sensor deployment suggestions), and again deploying sensors. 

The ADDAM System has been implemented on an Interdata, Model 70 mini- 

computer with 24K bytes of core memory. A teletype and an IDIgraf graphic 

display terminal wit!i 2K bytes of internal memory and direct memory access 

are used to provide a man/machine interface, 

1.3 Accomplishments 

The following is a summary of the accomplishments to date. 

Dynamic Decision Environment Generator. A Scenario Generator has 

been developed to generate fishing fleet scenarios for the dynamic decision 

task. This generator and the routines which simulate the behavior of the 

sensors are operational and have been used to generate scenarios. A 

generalized methodology for scenario generation based upon elicited 

expert probabilities has evolved out of the considerable insight gained 

through operational testing. 

Simulated Intelligence Analysis Report. A technique for using the 

expert's probability matrix from the Scenario Generator to estimate the 

probabilities of events in the real world has been developed. The 

probabilities are based on the status of the fishing fleet as reported 

by the operator, and they are presented to the operator in the form of an 

"intelligence analysis report." They are also used by the adaptive 

decision model. 

1-3 
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Adaptive Decision Model and Dynamic Utility Estimator. The adaptive 

decision (expected utility) model of operator decision behavior and the 

dyna-nic utility estimator have been implemented and are now running. 

Operational experimentation has shown that the model is able to track 

utilities based upon a simulated operator decision strategy. The 

parameters of the utility estimator are currently being adjusted to improve 

its performance. 

Decision Aiding and Man/Computer Interface. Decision aiding currently 

consists of suggesting maximum EU decisions to the operator. Other forms 

of aiding are under investigation. Subsystems for handling the inter- 

change of information between the human operator and the computer are now 

operational. They allow the operator to deploy senso»s and report status. 

They also display sensor outputs, statu., and suggested sensor deployments 

on the IDIgraf graphics display terminal and print intelligence reports 

on the teletype. 

Experimental Program. Work has begun on the first phase of the 

experimental program: the validation of the dynamic utility assessment 

technique. Operational experiments are being conducted to validate the 

algorithm for dynamic utility estimation and to determine the response 

of the model to different kinds of simulated operator strategies. This 

will provide experience and insights which will be needed when systematic 

experimentation is initiated with naive subjects. A convergence measure 

(a measure of validity of the model and the utility estimates) has been 

developed and an analysis of task related variables has begun. 

1.4 Future Work 

The primary research objectives of this three year study of adaptive 

computer aiding in dynamic decision making include the fo7lowing: 

Establish guidelines for the application of adaptive decision systems 

on the basis of mathematical considerations and related research. 

! 
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Implement the most promising techniques as interactive computer 

programs for realistic decision making. 

Explore in experimentally controlled environments the factors which 

influence effective monitoring, aiding, and automation by the adaptive 

learning programs. Formulate human factors criteria, and identify areas 

of program refinements. 

Validate major findings by similar data acquisition in real world, 

"open" decision making situations. 

Develop equipment design specifications (including major trade-offs) 

for practical field implementation of recommended techniques. 

The research plan for the coming year includes the following: 

Perform an experimental study which will demonstrate overall system 

operation in adaptive acquisition of decision strategies, estimation of 

operator utility, and ability to predict operator behavior. 

Define a meaningful measure of convergence of subjective operator 

values in order to be able to validate and utilize estimated utilities. 

Validate the accuracy of the EU model as a basis for estimation of 

operator utilities and for aiding. 

Identify conditions and constraints under which model is effective. 

Establish a theoretical framework for adjusting and modifying the 

model to most effectively predict operator decision behavior in 

performing complex intelligence vjathering ta:.;s. 

Explore the possibilities of including factors such as operator 

biases and cognitiv0 constraints in the model. 

Develop and experimentally evaluate decison and aiding schemes 

which are based on model-derived "dynamic" utility estimates. 

Establish the scope of applicability and develop guidelines for 

using the system in operator decision aiding and decision theory research. 

\ 

) 
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1.5 Report Organization 

The report is divided into two parts which are published under 

separate covers. Ti'e first part. Adaptive Decision Models and Dynamic 

Utility Estimation, presents the philosophical and theoretical basis for 

two unique features of the Perceptronics approach: an adaptive expected 

utility model and a technique for real-time estimatioi of dynamic utili- 

ties. It also describes ADDAM (Adaptive Dynamic Decision Aiding Machine), 

a system which applies these ideas to an intelligence gathering task, and 

outlines a plan for experimentation with the system. 

The second part of the report. Scenario Generation by Elicited Expert 

Probabilities, describes a unique technique developed at Perceptronics 

for generating realistic dynamic decision environments and the application 

of the technique to generating the intelligence gathering task. 

I 

1-6 

I I Mfcl 



^r 
^ 

2. INTRODUCTION 

2.1 ADDAM Overview 

The ADDAM (Adaptive Dynamic Decision Aiding Mechanism) System is a 

flexible vehicle for conducting research in areas of dynamic decision 

theory, adaptive decision models, dynamic utility estimation, and man/ 

computer decision making. 

The relationship among the basic elements of ADDAM are shown 

schematically in Figure 2-1. A dynamic decision environment is probabil- 

istically generated on the basis of expert probabilities and an organiza- 

tion structure specified by the experimenter. This decision environment 

is displayed to the decision maker as seen through costly, unreliable 

sensors which he has deployed to gather intelligence information. On the 

basis of this sensor info.mation, an intelligence analysis report, and 

varying forms of decision aiding, the operator makes decisions to deploy 

new sensors and to report the status of the environment. Finally, the 

operator's decision behavior is analyzed using pattern classification 

techniques to dynamically estimate his utilities for intelligence informa- 

tion. These utilities form the basis for several forms of decision 

aiding. 

Dynamic Decision Environment Generator. Scenarios of events in a 

dynamic decision environment are generated by a unique application of 

I Bayesian information processing techniques. Unlike PIP systems (Edwards, 

1962), which aggregate conditional probabilities elicited from experts 

in order to estimate the probabilities of complex events in a real 

world, the aggregated probabilities are used to obtain a Monte Carlo 

simulation of the real world. Scenarios thus generated have statistical 

consistency and can appear to respond dynamically to decision outcomes. 

The environment generator is used to generate scenarios involving the 

movements of a fishing fleet. Only those features of the scenario which 

are detected by the operator's sensors are actually displayed. 

■ 
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2.2 Organization of Part I of the Report 

The ADDAM System employs several unique concepts, including that of 

adaptive decision models and dynamic utility estimation. The adaptive 

decision model concept is examined in Chapter 3 and dynamic utility 

estimation is the main focus of Chapter 4. Chapter 5 describes the 

implementation of the ADDAM System and briefly discusses the results of 

a preliminary operational experiment. Chapter 6 outlines objectives for 

planned experimentation with ADDAM. 

The system for generating the dynamic decision environment is 

described in Part II of this report (under separate cover). 

1 
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3. ADAPTIVE DECISION MODEL 

3.1 Overview 

The ADDAM System uses an expected utility (EU) model as a basis for 

estimating utilitiei and aiding a decision maker in the performance of a 

dynamic decision task. The EU model is unique in one important aspect: 

its utilities are adaptively adjusted, in response to decision maker (DM) 

behavior during the performance of the task, by using trainable pattern- 

classifying system techniques. Thus, the adaptive expected utility (AEU) 

model, continuously tracks the operator's decision strategy as it changes 

in response to environmental changes, acquired learning, and other factors. 

This ch^ter provides a conceptual framework and rationale for the 

use of an adaptive expected utility model. It also describes the particu- 

lar AEU model used by ADDAM. Discussion of the technique for dynamic 

utility estimation is reserved for Chapter 4. 

3.2 Adaptive Expected Utility Model 

Decision models are often classified as being either descriptive or 

normative. Descriptive models attempt to describe the decision behavior 

of decision -n^kers a'id predict their actions vhile normative models attempt 

to prescribe the decisions they should make in order to satisfy specific 

decision criteria. Thus, a decision model used for decision aiding would 

I usually be classified as normative. However, an adaptive decision model 

is not so easily classified. 

In tracking the operator's behavior, the adaptive decision model is 

acting as a descriptive nodel. The error-correction procedure (see 

Chapter 4) adju.ts the model's parameters (its utilities, in the case of 

an MEU model) in a manner which vill make the model more descriptive of 

the operator's decision behavior. However, when the model is used as a 

basis for decision aiding it is normative. 

3-1 
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The use of an adaptive model for decision aiding establishes a 

complex, poorly understood, feedback-loop between the model and the human 

operator. The behavior of the decision model is modified by the human 

operator's behavior and this model behavior, in turn, is used to influence 

the operator's action. Establishing the nature of this "symbiotic" 

relationship and the important factors influencing it (see Chapter 6) is 

a major long term goal of our research. 

Expected utility models are widely accepted as normative models for 

decision-making under risk (Luce and Raiffa, 1Q57, and Krant, Luce, Suppes, 

and Tversky, 1971). The work of Tversky (1967), Goodman, Saltzman, 

Edwards, and Krantz (1971), end others has indicated that expected utility 

models provide a good first approximation to decision making under risk, 

at least for simple gambling situations where the number of attributes is 

low and the DM can relate to all attributes in terms of probabilities. 

Several researchers, however, have raised doubts about the model. Lichten- 

stein and Slovic (1971) argue that descriptive models of choice must take 

cognitive factors into account, and Tversky and Kahneman (1973) have shown 

that DMs use heuristics, termed representations, to relate the cues 

associated with making decisions. Wendt (1973) questions the validity of 

the general concept of maximization of expectation as a normative model. 

Another factor to consider is the validity of using objective 

probabilities to describe decision behavior. The alternative of using 

subjective probabilities and a Subjective Expected Utility (SEU) model 

introduces a great deal of complexity because one must now contend with 

two sets of unknown variables: subjective probabilities and utilities. 

If it can be assumed that the subjective and objective probabilities are 

equal, as was done (for example) by Seghers, Fryback and Goodman (1973), 

then the SEU and EU models are equivalent. This assumption is reasonable 

if the decision maker is told the objective probabilities. 
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From the discussion above, it is clear that pxpected utility models 

have shortcomings. Nevertheless EL) models are useful in situations where 

these shortcomings are not significant. The ADDAM System uses EU to 

provide a structure for utility assessment and decision aiding. The 

adaptive mechanism then searches for subjective values which predict 

operator behavior in terms of the EU model.  It is not necessary for the 

EU model to be Perfectly predictive of DM behavior since the adaptive 

mechanism responds to patterns of behavior.  Individual DM actions tend to 

average out.  Inconsistencies between the predictions of the model and the 

behavior of the DM will cause the value of the estimated utilities to 

fluctuate over time, but as long as this variance stays within reasonable 

bounds the model utilities can be used as a relative measure of the actual 

DM utilities (see Chapter 4). 

3.3 Application of the Model 

The adaptive expected utility model is applied to modeling DM 

behavior in the performance of an intelligence gathering task. Briefly 

(see Section 5.1 for a more complete description), the task consists of 

deploying sensors with differing object sensitivities, reliabilities, and 

costs to gather intelligence information about a simulated fishing fleet 

environment. 

The expected utility model is based upon the utility for information 

from each kind of sensor. The model is first expressed for the most 

general case where both alpha (false negative) and beta (false positive) 

errors are possible. It is then simplified to the form used in ADDAM, in 

which ony beta errors can occur. In its most general form, the expected 

utility of deploying a sensor of type k at location L is the sum of the 

utilities of true positi/e and true negative sensor responses, minus the 

utilities of false positive and false negative responses and the cost of 

deploying the sensor: 

3-3 
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-d-P^D) kPB ku1e 

-O-Pid» J kuje] 

(True Positive) 

(True Negative) 

(False Positive) 

(False Negative) 

(Sensor Cost) (2-1) 

The symbols used above are defined as follows; 

EUk(L) 

kHi 

P^L) 

k"» 

kP6 

kUl 

kUiC 

= expected utility of deploying sensor of type k at 

location L 

= sensor capability mask bit. 1 if sensor is capable of 

reporting information about attribute i, 0 if sensor is 

incapable of reporting about attribute i. 

= probability of an object with attribute i at location L. 

= probability of an a error (false negative) from a 

sensor of type k. 

= probability of a s error (false positive) from a sensor 

of type k. 

= utility of correct information about attribute i from a 

sensor of type k. 

= utility of erroneous information about attribute i from 

a sensor of type k. 

= fixed cost of deploying a sensor of typt U. 

i 
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In ADDAM's task simulation the assumption is made that the sensors 

are extremely sensitive and never fail to detect the presence of an 

object, i.e., ,0 ■ 0. However, because of this sensitivity, they o^ten 

detect objects which are not present, i.e., kPß f  0. This assumption 

results in the following simplifications to the EU model: 

EU(L) ' I kMi [pi(L) kui ^-Pi^H1"^ kui 

-d-p^D) ^3 kUie] 

-Ck 

= ^kMi ^Ve. ^"PiC-^^ kUi Vß
(1-pi(L))] kUie 

(3-2) 

•Ck (3-3) 

We let 

and 

then 

^.(D^M. [l-kP3 (l-P^D)] 

cPie^ = kMi ^ n-P^D)] 

ElUL) = I   i^H)  ^ - kPie(L) kUie] -Ck 

(3-4) 

(3-5) 

(3-6) 

The model selects, for each location on the board, the sensor whose 

expected utility is maximum. To prevent the deployment of I sensor at 

every location, a null sensor whose mask bits are all zero is included as 

one of the alternatives. Essentially, the cost of this mil sensor acts as 

a threshold EU, below which no sensor is deployed. 
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3,4 Estimation of Model Parameters 

The adaptive expected utility model irakes use of three sets of 

parameters: probabilities, utilities, and costs. The probabilities used 

by the model are objectively determined values. These values are displayed 

to the operator. The probabilities of false alarms. . p , are character- 

istics of the sensors ar.d their values are set by the experimenter. The 

probabilities associated with objects, p.(L), are computed on the basis 

of the operator's status report by aggregating the "elicited expert 

probability matrix." The procedure is described in Part II (Section 3.3) 

of this report (under separate cover). 

TIK costs of deploying sensors are set by the experimenter during 

program initialization. The values may vary according to the needs of 

the experiment. 

The utilities are the only values which are actually estimated. The 

values are dynamically estimated by tracking the operator's behavior as 

he performs the decision task. It is, in fact, the mechanism for dynamic 

utility estimation which makes the EU model adaptive. Utility esti. ition, 

in general, and the mechanism for dynamic utility estimation, in particular, 

are the topics of Chapter 4. 
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4. UTILITY ASSESSMENT 

4.1 Techniques of Utility Assessment 

The use of expected utility decision models (as well as other 

utility-based models) depends on being able to estimate the utilities of 

the decision maker. The usual procedure for applying these models to 

complex decisions in real world contexts involves two steps, "he first 

step is to estimate the utilities using one of several conventional 

utility assessment techniques and the second step is to use these utility 

estimates in applying the model. 

Techniques currently used for utility assessment can be divided into 

four categories: ordinal scale methods, Hirect methods, gambling methods, 

and multivariate methods. These techniques have been reviewed and analyzed 

by K/ieppreth, Gustaf son, Johnson, and Lei f er (1973). With ordinal 

assessment methods, the decision maker is asked to qualitatively rank his 

preferences. His rankings are used to develop an ordinal scale of 

utilities. This can be converted to an interval scale if equal intervals 

are assumed, but the resulting scale is only approximate. 

Direct methods of utility assessment (e.g.. Beach, 1972) require the 

DM to make quantitative estimates of his subjective feelings. These 

methods are quick and easy to use since they do not require large numbers 

of repetitious judgments and calculations, but their validity has been 

questioned because they do not follow the axioms of utility theory. 

However, several researchers (Beach, 1972; Fisher, 1972) have shown that 

direct utility estimates are comparable with axiomatically derived 

estimates. 

Gambling methods require the a priori decomposition of complex 

decisions into many simple lotteries. Either the probability or the 

outcome of each lottery is varied until the DM is indifferent between the 

lottery and a "sure thing". Utilities thus calculated are axiomatically 

valid, but the process is long, tedious, and somewhat contrived. 
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Multivariate methods are used to obtain utility functions which 

involve more than one attribute, especially when the attributes are not 

independent. The procedure involves determining which combinations of 

attributes result in indifference on the part of the DM when compared 

with a "reference" combination. By making a large number of such com- 

parisons, a set of indifference curves can be developed. Making these 

comparisons is a long and tedious process. 

Validation. Utility estimates are measures of subjective quantities 

which characterize a person's judgments, and they are valid only to the 

extent that they approximate these quantities (Peterson, 1971). Because 

of the difficulty i ^bta-'ning independent measures of these subjective 

quantities, it is difficult to validate utility estimates. 

One widely used method of validating utility estimates is to check 

for consistency. If a DM makes choices which are inconsistent with the 

axioms of utility theory or other requirements of the utility assessment 

process, the inconsistencies are called to his attention and resolved. 

Human decision makers, however, are not perfectly consistent (Edwards, 

1961), thus it may be unreasonable to require perfect consistency in 

many real world decision tasks. Further, the consistency check only 

insures that the utility estimates are internally consistent. It does 

not insure that they accurately reflect the DM's true subjective values. 

Comparing the operator's utilities with organizational utilities is 

a second method of validating utility assessments (Peterson, 1971). 

Organizational utilities are values which are defined by the organization 

to which the DM belongs. These externally specified values are then used 

as a standard for evaluating the DM's utility es imates. Other externally 

defined decision criteria can also be used to provide "objective" 

standards for evaluating utility estimates. 

Another method of validation involves the examination of the reli- 

ability of value judgments over time. Value judgments made at one time. 
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which systematically differ  from judgments made under the same conditions 

at another time would tend to invalidate both sets of value measures 

(Miller, Kaplan, and Edwards, 1967).    Similarly consistency in behavior 

over time would tend to validate the value measures. 

Construct validity is another means of utility validation.    This is 

based on the idea that two different methods of measuring the same 

abstract quantity should give comparable results  (Miller, Kaplan, and 

Edwards, 1967).    Fischer (1972) describes a number of different comparisons 

which have been used.    They include the degree of correlation (Fischer 

uses the word convergence, but we will reserve this term for us in a more 

mathematical sense) between (1) wholistic (intuitive) judgments and those 

based upon decomposition techniques (of utility assessment); (2) model 

predicted choices and real choices;  (3) values obtained using two or more 

different utility assessments; and (4) different subjects. 

In light of the definition of utility as a measure which characterizes 

a person's judgments, it would seem that the degree of correlation with 

actual behavio- would provide the strongest kind of validation.    However 

bahavioral validation must be used with caution.    Characterizations of 

human decision behavior (i.e., utility assessments) must be made within the 

context of a model of that behavior (in most cases some sort of EU model is 

used).    Thus, the validity of utility estimates is inherently limited by the 

validity of the decision model.    Behavioral validation, more than other 

methods of validation, calls attention to ehe limitations of the model. 

Static vs. Dynamic Utilities.    Because of the complexity of utility 

assessment techniques, most applications of decision theory to real world 

problems involves a two step process.    The first step is to assess the 

DM's utilities and the second is to apply them to the decision problem. 

Because it is not feasible to re-assess utilities frequently in repetitive 

tasks, it is assumed that they remain static during this application.    Such 

an assumption might be valid for a static decision task.    However, there 
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is no reason to assume that the DM's utilities remain static during the 

performance of a multistage decision task. Nor is it reasonable to assume 

that they remain the same when the context changes from that of a set of 

lotteries to the real world task. 

In performing a multistage (dynamic) decision task the DM acquires 

information which affects his subsequent performance. Bayesian information 

processing systems (Edwards, 1962) make use of this information to modify 

the probabilities associated with the decision processes. This information 

may change the decision maker's goals as well. Thus, the relative values 

he assigns to decision outcomes will change. Also, changes in the prob- 

abilities of events may have an effect on the utilities of alternatives, 

contrary to the usual assumption of independence between probability and 

utility (Slovic, 1966). Thus, dynamic decision tasks introduce a need 

for dynamic utility assessment techniques. 

The following section introduces an adaptive technique for dynamic 

utility assessment which was developed at Perceptronics. 

4.2 Dynamic Utility Estimation 

The dynamic utility estimation technique is based on the principle 

of a trainable multi-category pattern classifier. The utility estimator 

observes the operator's choices among R possible decision options 

available to him, viewing his decision making as a process of classifying 

patterns of event probabilities. The utility estimator then attempts to 

classify the eveni. probability patterns by means of an expected utility 

evaluation, or discriminant, function. These classifications are 

compared with the operator's decisions and an adaptive error-correction 

training algorithm is used to adjust pattern weights, which correspond to 

utilities, whenever the classifications are incorrect. Thus, the utility 

estimator "tracks" the operator's decision making and "learns" his 

utilities. 
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Pattern classification techniques have been used in a limited 

fashion to perform decision making functions.    For exctiple, Henderson 

(1972) used a two-category classifier for diagnostic evaluation of 

medical questionnaires and Bartels and Wied (1974) used a multi-category 

classifier for evaluation of microphotometric measurements in clinical 

cytodiagnosis.    In both of these typical cases the classifiers respond 

to pattern cues which have an objectively "correct" classification. 

These correct responses were learned during an off-line training period 

and then applied to the performance of a static decision task. 

The application of pattern classification techniques to utility 

estimation was suggested by Slagle (1971), who pointed out that the 

utility function was an evaluation function and that the function could 

be learned from a person's preferences.    A two-rateg^ry pattern classifier 

which adaptively estimates operator utilities for computer or human 

control of a man/computer decision task was developed by Freedy, Weisbrod, 

and Weltman (1973).    It was shown in pilot studies that this utility 

estimator could track the operator's utilities on-line during on-the-job 

performance of the decision task and that the estimator was dynamically 

responsive to changes in the operator's value structure (Weltman, Steeb, 

Freedy, Smith, and Weisbrod, 1973).    In this case, the pattern classifier 

responded to patterns of probabilities (of human and computer success and 

failure) and the operator's subjective preferences for human or computer 

control of the task. 

Mi:Ui-Category Pattern Classifiers.    A multi-category pattern 

classifier (Nilsson, 1965) receives patterns of data and responds with a 

decision to classify each of the patterns in one of R categories.    The 

classification is made on the basis of R linear discriminant (or evaluation) 

functions, each of which corresponds to one of the R categories.    The 

discriminant functions are of the form 

g^X) = W.  • X    for i = 1, 2 R (4-1) 
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where J is  the pattern vector and W. is a weight vector. The pattern 

classifier computes the value of each discriminant function and selects 

the category, i, such that 

g^x) > g^x) (4-2) 

for all j = I, 2, .... R; i ^ j, 

The adaptive error-correction training algorithm is very straight- 

forward. Whenever the category selected by the pattern classifier, i, is 

different from the actual classification, k, the weights W.. are adjusted 

to reduce (punish) the value of g.(J0 and the weights W. are adjusted to 

increase (reward) the value of giJX). Thus, 

W: = Wi + d • X   (Reward) 

W^ = Wk - d • X   (Punish) 

where d is the correction increment. 

(4-3) 

(4-4) 

A linear pattern classifier is trained by presenting it with a 

"training set" of preclassified patterns. These patterns are presented 

to the machine, one at a time, until it is able to classify them perfectly. 

Once the machine is trained, it is then used to classify patterns which 

have not previously been classified. If the categories are linearly 

separable the training procedure is guaranteed to find a set of solution 

weight vectors in a finite number of steps (Nilsson, 1965) and this 

solution set will yield a zero error rate. If the categories are not 

linearly separable, the error rate will not be zero, though it may be 

satisfactorily low (Slagle, 1971), and training will have to be terminated 

after some finite number of steps. 
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The Dynamic Jtility Estimator. The dynamic utility estimator, shown 

schematically in Figure 4-1, classifies pattern vectors 

p = Cpi,r p2.r Pi,k •••! 
(4-5) 

whose comnonents, p. . , are the aggregated probabilities of the ith 

decision outcome, as influenced by the reliability of the kth sensor. 

These components correspond to the probabilities of correct and incorrect 

sensor responses defined in Equations 3-4 and 3-5. 

The discriminant functions are the expected utilities of each sensor 

decision ar, defined in Equation 3-6.    The utility estimator computes the 

EU of each sensor at each location on the borrd and selects those sensors 

(including the null sensor described on page 3-5)    for which the EU is 

maximum.    The selected sensor at each location is compared with the actual 

decision made by the operator and if they differ the appropriate utilities 

are rewarded (increased) or punished (decreased) by the training procedure. 

Thus the utilities are trained to characterize the operator's judgmental 

behavior -- i.e., to make the utility estimator respond with the same 

decisions as the operator. 

The training procedure for the utility estimator is as follows. 

Whenever the decision, j, selected by the utility estimator differs from 

the decision, k, selected by the operator, the utilities associated with 

the estimator decision are punished and those associated with the operator 

decision are rewarded: 

t+1 
JUi 

= .ttj    - 
J  1 

d - jPi<L) 

,«' 
m 
&* d jW-> 

k-r m x + 
d ■ siM 

& 
■ A- d ■ kPle<L> 

(Punish) (4-6) 

(Reward) (4-7) 
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Figure 4-1.    SCHEMATIC REPRESENTATION OF DYNAMIC UTILITY ESTIMATOR 
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can he adjusted to 9ive op-imum convergence        he 
other vaues are as defined in Sect,on 3.3 (page 3 5). 

•   •. the utility estimator differs from thf 
The procedure fo- train, a ^1^ ^ ^ i ^^^ 

procedure for a pattern class^e . ^^ are 

Cassifier is the classificatmn of the pattern^ P ^ ^ 

usually of no importance hy «^J^^Z with an acceptahle 

degree of "^-„'^^e'primary outputs and the classifications 

response to the dynamics of the task. 

Because the utility estimator is -in, -tinuously trained^^ 

wou,d he useful to examine the ^'^   * ^     '    parahle into   ' 

Editions." t r:::1::^:: "t m or::" 1^ to ^ - 
categories (decisions), the •""«"»•     tra1n1ng „kes place 
perfectly after a finite number of steps. S ^^^^ to 

- r r Tf rrpir;: :::::•:::: -—estimator 

utim,es will convert to a new set of value. 

M the patterns are not linearly "^^Z^ Perfectly, 
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4.3 Utility Validation and Convergence 

The primary means of validating the dynamic utility estimates would 

be to demonstrate that they characterize the operator's behavior within 

the context of the decision model. This type of validation is inhereric 

in the error-correction procedure of the dynamic utility estimation 

technique. 

The predictive validity of the utility estimates is a matter of 

degree. Perfect predictive validity would require that the operator's 

behavior in the task be perfectly consistent with tie decision model. 

Perfect predictive validity would result in the perfect convergence of 

the utilities. Given the limitations of human memory, information 

processing, etc., it would be unreasonable to expect this in a task us 

complicated as intelligence gathering. Thus, the primary demonstration 

would be to show that, as the operator learns the task and approaches a 

steady state behavior, the variability of the utility estimates approaches 

a steady state. If the operator behaves "most of the time" in a manner 

which is consistent with the model, the amount of variability will be 

small. If his behavior is "erratic" there may be a great deal of 

variability. A measure of the changes in the utility matrix, therefore, 

can be used to evaluate the validity of the utilities. 

A measure of the variability of the utilities is the Utility Matrix 

Difference (UMD) score. This score is computed as follows: 

uMD{t1,t2) • i ^-»»I'lvr i^i-Xii 
Kyi K 9 1 

(4-8) 

The UMD is a global measure of the variance of the utility values 

from time t! to time t2. The magnitude of the UMD provides a measure of 

the validity of the EU model and of the utilities. The rate of change of 

the UMD indicates the stability of the utility estimator. As the utility 

estimator approaches a steady state, the rate of change of the UMD will 

approach zero. 
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5. ADDAM: A SYSTEM FOR MAN/COMPUTER OECISION RESEARCH 

The purpose of the ADDAM (Adaptive Dynamic Decision Aiding Machine) 

System is to provide a flexible vehicle for research on dynamic decision 

theory, adaptive decision models, dynamic utility estimation, and man/ 

computer decision making. ADDAM combines a system for simulating a 

dynamic decision task with an adaptive decision model, a system for dynamic 

utility estimation, and mechanisms for man/computer interaction and 

decision making. 

h.}    Decision Task 

The initial decision task simulation is a simplification of the 

intelligence gathering task described by Freedy, Weisbrod, May, Schwartz, 

and Weltman (1973). The task involves deploying sensors of varying object 

specificity, reliability, and cost in order to gather intelligence infor- 

mation about a dynamically varying hierarchical organization — a fishing 

fleet. In performing this task, the operator (decision maker) must report 

what he believes to be the status of the task environment. 

The Environment. The environment is a homogeneous expanse of ocean. 

This expanse, referred to as the board, is divided into a five by five 

square two-dimensional spatial grid. The fishing fleet, consisting of 

trawlers which may or may not deploy nets, moves around the board, from 

square to square. Also present are icebergs which similarly move around 

the board. These objects are constrained to the beard. 

There are several environmental conditions which affect the behavior 

of the objects. These include time of day (day or night), weather 

conditions (clear or stormy), and phase of moon. The presence of nearby 

icebergs also effects the behavior of trawlers. 
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Each object on the board has the following characteristics 

associated with it: object type (iceberg, trawler, trawler with nets 

deployed), location, and heading (North, East, South, West, Null). These 

objects cannot be seen by the operator except through sensors which he 

has deployed. 

The Sensors. The properties of the sensors available to the 

operator include object sensitivity, response specificity, error rate, 

and cost. Object sensitivity refers to the hinds of objects which the 

sensor can detect. Response specificity refers to the sensor's ability 

to identify the objects which it has detected. Error rate, at the present 

time, is limited to false positive (e-error) rates. It is also possible 

to specify a false negative (a-error) rate; however, the decision model 

is currently implemented to include only ß-errors. 

These properties permit the specification of a wide variety of 

different kinds of sensors. Table 5-1 defines the set of sensors used for 

initial testing of the system. This set includes two trawler sensors with 

different false alarm rates and costs, a net sensor, an iceberg sensor, and 

an '•everything" sensor. All of these sensors respond with the kind of 

object detected. On the other hand, the "something" sensor, a low cost, 

low reliability sensor, is sensitive to all kinds of objects, but only 

responds positively or negatively. 

The operator has an unlimited number of sensors of each type at his 

disposal. However, he can deploy only one sensor per square, and he must 

pay a cost for each sensor he deploys. The sensor only responds to objects 

within its square. 

The Decision Task Sequence. The decision task sequence (Figure 5-1) 

begins when the operator deploys his sensors. Once he has finished 

deploying his sensors, he receives a report of the sensor outputs. Some 

of these sensors may give a oositive response while others may not. On 

the basis of the sensor responses, knowledge cf sensor behavior, previous 
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Table 5-1 

Sensor Properties 

Type Object Sensitivity Response Specificity 

False 
Alarm 
Rate Cost 

Tl Trawler Trawler 0.10 2.50 
T2 Trawler Trawler 0.30 1.50 
N Trawler with Net Net 0.30 1.50 

I Iceberg Iceberg 0.20 2.00 

E(Everything) Trawler/Net/Iceberg Trawler/Net/Iceberg 0.01 5.00 

S(Something) Trawler/Net/Iceberg Positive/Negative 0.40 0.50 
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sensor responses, etc., the operator reports what he believes is the status 

of the environment. This status report, which includes object type, 

location, and heading, is used by the system to generate an intelligence 

The incelligence analysis report gives the probabilities that each 

square will contain an object on the next turn. For simplicity, only 

squares with non-zero probabilities are reported. This report is displayed 

to the operator and is used by the adaptive EU model. The operator then 

receives aiding information which will help him make his next set of sensor 

deployment decisions. Finally, he deploys sensors to begin the cycle anew. 

5.2 System Hardware 

The ADDAM System is implemented on an Interdata Model 70 minicomputer 

with 24K bytes of core memory. The mai/computer interface is through a 

teletype and an Information Displays, Inc. IDIgraf graphic display terminal 

with 2K bytes of internal memory and direct memory access. Figure 5-2 

illustrates the physical arrangement. 

The hardware was selected to provide the capability for real time 

operation of the system. The operator inputs his decisions, and receives 

sensor outputs, intelligence reports, and aiding information within a 

short period of time. The main time limitation is the speed of the teletype 

in printing out intelligence reports. A hardware "precision interval 

clock" is used to control the amount of time allocated for input of sensor 

and status decisions, and for experimental sessions. 

5.3 Program Structure 

The program is organized as a set of functional modules which are 

controlled by a Master System Scheduler. The functional flow chart (Figure 

5-3) illustrates the sequencing of the basic modules. Additional modules 

(not illustrated) can be used to perform such functions as computing the 
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Status board payoff or the convergence measures, or gathering statistical 

data for evaluating experimental results. 

Master System Scheduler. This program consists of a control structure 

for scheduling a sequence of calls to functional module subroutines. It 

sets up the communications between subroutines and then passe:; control to 

them. The Master System Scheduler also contains a clock routine for 

allocating time for tie performance of certain functions. For example, if 

the experimenter wishes to give the operator one minute to input all of 

his sensor or status decisions, the clock routine will terminate the inputs 

after one minute. If the experimenter wants the whole session to last 15 

minutes, the clock routine handles it. 

Initialize Program. This module sets up the program for the beginning 

of a run. It initializes the clock, and allows the experimenter to input 

the expert probabilities used to generate the environment and the initial 

starting values for the utilities. If the operator has used the system 

before, it is possible to input his previous utilities as a starting point. 

Update Environment State. This module, the Scenario Generator, 

generates the decision task scenario, one step at a time, from the matrix 

of elicited expert probabilities. The technique used to generate the 

scenario is described in Part II of this report. This module also contains 

the sensor routines which act as windows through which the operator can 

observe the state of the environment. 

Display Sensor Outputs. This routine displays the sensor outputs on 

the IDIgraf graphics terminal. Nothing is displayed during the first pass 

through the Master System Scheduler control loop before the first sensors 

have been deployed. The display formats for all display routines are 

described in Section 5.4. 
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Receive and Display Status Decisions. This routine sets up a 

communications link with the operator in order to receive status decisions. 

The operator types in a status decision on the IDIgraf keyboard and 

transmits it to the computer. The decision is then displayed in the status 

input area of the display screen. When the operator manually terminates 

the input, the status decisions are displayed on the situation board (on 

the IDIgraf screen). 

Generate Intelligence Data. This module analyzes the operator's 

status report and generates the probabilities used in the intelligence 

report. These probabilities are generated using the current status of 

the environment, as reported by the operator, and the Elicited Expert 

Probability Matrix used by the scenario generator. 

Display Intelligence Report. This module arranges the intelligence 

data into report format and prints it out on the teletype. 

Compute Suggested Sensor Decisions. This module is the heart of the 

Adaptive Expected Utility Model. It computes the expected utility of 

using each sensor and selects the sensors which maximize the ED at each 

boar^ location. One of the sensor choices is a null sensor which does 

nothing and is not reported (displayed) to the operator. The cost of 

deploying the null sensor acts as a threshold EU, below which no sensor 

is deployed. 

Display Suggested Sensor Decisions. This routine displays the 

suggested sensor decisions on the IDIgraf terminal. It does not display 

decisions to deploy null sensors. This routine can be disabled by the 

experimenter for experiments where it is not desirable to display the 

suggested sensors. 

Receive and Display Sensor Decisions. This module functions in the 

same manner as the Receive and Display Status Decisions module. 
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Train Utilities. This module is the heart of the Utility Learning 

Machine. It compares the sensor decision suggested by the adaptive EU 

model with the decision made by the operator and rewards or punishes the 

appropriate utilities. 

5.4 Man/Computer Interfaces 

Human interaction with the ADDAM System takes place on two levels. 

The first level involves the operator (experimental subject) interface 

with the system during the performance of the decision task. As far as 

the operator is concerned, this interface has a fixed structure during the 

performance of the task. The system requires certain kinds of inputs from 

the operator and it, in turn, provides him with specific kinds of outputs. 

The second interface level is between the experimenter and the 

system. At this level, the experimenter is allowed a great deal of 

flexibility in modifying the nature and complexity of the task environment, 

the performance characteristics of the decision model, and structure of the 

operator/computer interface. 

The first part of this section will describe the current structure of 

the operator/computer interface. The second part will describe the degree 

of flexibility available to the experimenter. 

Operator/Computer Interface. The operator interaction with the system 

begins with a request for sensor decisions. The system displays the 

"Sensor Deployment" heading on the IDIgraf graphics display terminal and 

positions the cursor to the start of the first input line. The operator 

then inputs the location (square coordinates) and type for the first soinsor 

to be deployed and transmits it to the computer. The system responds by 

positioning the cursor to the start of the next input line and the process 

is repeated. An example of the inputs are shown in the upper right hand 

corner of the display shown in Figure 5-4. 
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If the system has suggested sensor decisions, the input procedure is 

a bit different. The recommended actions are printed on the teletype as 

shown in Figure 5-5. Also, the suggested sensor decisions are displayed 

in the sensor input area of the display and the cursor is positioned in 

front of the first decision. The operator can input Y or N to accept or 

reject the suggestior.. If he inputs C (change), the suggestion is erased 

and the rursor is oositioned to input the operator's changes. When the 

operator reaches the bottom of the list he can input additional sensor 

decisions. Thus, the operator processes the suggested decisions in check- 

list fashion, accepting, rejecting, or changing tnem, and adding new 

decisions to the bottom of the list. 

Once the operator has made all of his sensor decisions, he terminates 

the input and the sensors appear in the upper left hand corner of the 

selected squares on the board. If a sensor detects an object, it begins to 

blink and the sensor output appears to the right of the entry in the sensor 

deployment list (see Figure 5-4). 

Following sensor deployment, the system will accept the operator's 

status decisions. The "Fleet Status" heading appears on the display and 

the cursor appears at the start of the input line. The operator types in 

the location, object type, and heading of the first object to be indicated 

and transmits it to the computer. The system responds by positioning the 

cursor to the start of the next input line and the process is repeated. 

Sample inputs are shown in the lower right corner of Figure 5-4. When the 

operator terminates his inputs, the status indicators appear on the board 

and the listing of status decisions disappears from the display. The 

sensor decision listing also disappears, but the sensors themselves do not 

disappear from the board. 

The intelligence analysis report, printed on the teletype, includes 

the location and the probability of occurrence for each type of object. 
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Figure 5-5.    SENSOR PLACEMENTS 
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Locations for which the probabilities are zero are omitted from the report. 

A sample intelligence report is illustrated in Figure 5-6. 

Experimenter/Computer Interface. The experimenter interacts with the 

ADDAM System primarily to adjust the system's behavior to meet the needs of 

his experiments. The system is designed to allow the experimenter to 

modify, with a minimum of effort, the nature and complexity of the decision 

task pnvironmert, thi decision model performance characteristics, and the 

structure of the operator/computer interface. 

The performance characteristics of the decision model can be controlled 

by modifying (1) the initial utility values used by the adaptive EU model, 

(2) the learning rate of the utility estimator, and (3) the EU evaluation 

function used by both the model and the utility estimator. The easiest 

to modify are the initial values of the utility matrix, which are input by 
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The experimenter controls the decision task environment by modifying 

the characteristics of the scenario and the environment sensors. The 

scenario is generated from an object list and a matrix of conditional 

probabilities of transformations which determine the behavior of these 

objects (see Freedy, May, Weisbrod, Weltman, 1974). The experimenter can 

modify the behavior of the objects by changing the conditional probability 

values. He can add new objects, for example, additional trawlers or a 

factory ship, by making additional entries in the tables which define the 

object list. 

Control over the properties of sensors is given to the experimenter in 

two ways. Object sensitivity and response specificity are defined by tables 

in the sensor routines. These properties can be changed by modifying the 

table and new sensors can be defined by adding new entries to the table. 

False alarm rate and sensor costs are specified by the experimenter during 

the initialization of the program. Thus they can be reset at the start of 

each run. 
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FISHING FLEET INTELLIGENCE REPORT 

REPORT NO. 24 

ESTIMATED ELEMENT DISTRIBUTION FOR NEXT PERIOD IS 

PROBABTLITY THAT SECTOR OCCUPIED BY 

) 

FIELD 
SECTOR ICEBERG TRAWLER 

TRAWLER 
AND NET 

SOME 
ELEMENT 

Al 8 0 0 8 

Bl 45 0 0 45 

A2 45 0 0 45 

B4 0 0 2 2 

A5 0 0 3 3 

B5 0 80 10 82 

C5 0 0 3 3 

Figure 5-6.  INTELLIGENCE ANALYSIS REPORT 
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the experimenter during program initialization. These initial values 

affect the behavior of the adaptive EU model and the utility estimator, at j 
least during the early stages of a run. Since the initial performance of a 
decision aiding system can have a significant influence on the operator's use 
of the decision aid (Halpin, Thornberry, and Streufert, 1973), the choice of 
initial utility values may be very inportant in some experiments. The 
choice of initial utilities might be made from a standard set of values 
(e.g., all values equal to one), a set of values learned during a previous 
run with the same subject, or a set of "expert" utilities. 

The learning rate of the utility estimator is controlled by the 
correction increment, d, defined in Chapter 3. This parameter affects the 
rate of convergence of the utility estimator and determines its sensitivity 
to changes in the operator's decision behavior. The value of the correction 
increment also affects the amount of variance which will result from in- 
consistent operator behavior 
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Modification of the expected utility function (Equation 3-6) is the 
most difficult to use of the three methods of controlling the decision 
model. This expression, which is also used as a discriminant function by 
the utility estimator, is programmed into the system. Reprogramming is 
facilitated, however, by the modular design of the system. Such redefinition 
of the EU function might be done if, for example, new kinds of objects i 
(e.g., factory ships) vere  introduced into the scenario generator. 

Changing the structure of the operator/computer interface is -, 
accomplished primarily by changes to the Master System Scheduler. Since 
he scheduler is a sequence of calls to functional modules, inserting and 
deleting calls to modules will change the structure of the interface as 
seen by the operator. For example, in the initial experiments to validate 

t the model, it is not desirable to aid the operator by suggesting sensor 
decisions to him. This change is easily implemented by deactivating the 
routine which displays the suggested decisions. Other changes, such as 
displaying or not displaying the operator's payoff score, are similarly 
accomplished. 
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The amount of time avdlable to the operator is an important part 

of his interaction with the system. Parameters in the Master Scheduler 

determine how much time is allowed for the operator to make sensor 

decisions and status decisions. Other parameters determine whether the 

input periods are terminated by operator action, expiration of the time 

period, or both. Also determined by parameters in the scheduler is the 

amount of time allocated for an experimental run. 

5.5 Decision Aiding 

One aspect of the man/computer interaction which is of central 

importance is decision aiding. One type of decision aiding, the suggesting 

of sensor decisions on the basis of maximum expected utility, has been 

implemented and is currently being investigated. A number of other forms 

of decision aiding are also of interest. An analysis of the operator's 

immediate value structure is one such form of aiding. This permits both 

self and outside assessment of the operator's decision behavior, as well as 

comparison with other value standards such as organizational values or 

expert opinion. Figure 5-7 illustrates a utility report which is now dis- 

played to the experimenter at the end of a run. This report could also be 

presented to the operator as a rudimentary form of aiding. Changes in the 

dynamic estimates of the operator's utilities and inconsistencies in his 

behavior may signal significant happenings in the decision environment or 

a major reassessment by the operator of important decision criteria. These 

changes could be reflected in a similar report. 

Analysis of the expected utilities of information and decisions is 

another form of aiding which may be of value to the operator. Highlighting 

"important" incoming data is a form of decision aiding which may prevent 

the operator from missing critical events. The decision to continue to 

acquire information or to report it may depend upon the instantaneous EU of 

the information and, perhaps, some threshold of importance. 
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OPERATOR UTILITY REPORT 

PERIOD NO. 23 

POS UTILITY CORRECT INFO   NEG UTILITY FALSE ALARM 

SENSOR TRAWLER TRAWLER 
TYPE      ICEBERG TRAWLER AND NET  ICEBERG TRAWLER AND NET 

I 

Tl 

T2 

N 

E 

226 0 0 

0 170 0 

0 100 0 

0 0 147 

136 140 139 

95 0 0 

C 98 C 

0 100 0 

0 0 97 

95 99 98 

Figure 5-7. OPERATOR UTILITY REPORT 
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Finally, sensor decisions which are optimal on the basis of 

criteria other than maximum expected utility can be suggested to the 

operator. These criteria could include published policy, expert consensus, 

or objective performance measures, as well as operator utilities. Continued 

acceptance of such machine suggestions could lead to a progressive transfer 

of the task to the computer, with the human operator retaining the capability 

to review and override machine decisions. 

5.6 Current Status of ADDAM 

The ADDAM System has been implemented and is now running. It is 

currently beinq used for operational experiments and shakedown tests. The 

Scenario Generator, used to generate fishing fleet scenarios for the dynamic 

decision task, and the routines which simulate the sensors are operational 

and have been used to generate scenarios. A modification of the Scenario 

Generator is being used to generate intelligence reports based upon expert 

probabilities and the operator's status report. 

The adaptive decision model and the dynamic utility estimator are 

operational, as is the man/computer interface subsystem. Minor revisions 

are being mad» as the nature of the interaction becomes more apparent; 

however, major changes are not anticipated. Decision aiding currently 

consists of suggesting maximum EU decisions to the operator. Other forms 

of aiding are under investigations. 

5.7 Operational Demonstration of Utility Estimation 

The adaptive decision model and dynamic utility estimator are 

currently being tested in operational expp "nents. The results of one such 

dynamic utility estimation test are presented in Figure 5-8. The estimated 

utilities for information about the fleet elements are shown as a function 

of the trial number. The objective of the test was to ascertain the 
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capability of the system to track and estimate the operator's utilities 

for information sources, given consistent DM behavior. 

An arbitrary operator decision strategy was chosen in which decision 

alternatives were selected solely as a function of the probability of the 

movement of an object to a bo/ird location. This strategy is summarized 

in Table 5-2. Whenever the intelligence report showed that the probability 

of an iceberg at a given location to be higher than 0.60, the operator 

was instructed to deploy an iceberg sensor at that location. When the 

probability of a trawler was greater than 0.40 he was told to deploy a 

trawler (Tl) sensor. When the probability of a trawler with a net was 

greater than 0.80, a net sensor was to be deployed. 

At the beginning of the decision task all utilities were arbitrarily 

set at 100. As the decision behavior was tracked, the values separated 

into three distinct levels. A trend toward separation was apparent after 

only 15 trials. After about 40 trials the utilities converged to three 

distinct levels with variations around mean values. 

The convergence of the utility estimates to distinct levels indicates 

that the EU model reflects gross operator behavior. The variations around 

these levels represent slight inconsistencies in the behavior. The 

horizontal line segments occur during periods in which no training took 

place. This absence of training indicates that the model predicted 

decisions were in agreement with the decisions made on the basis of the 

operator's decision strategy. 
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Table 5-2 ! 
An Operational Experiment Decision Strategy 

! Deploy Sensors as Shown 

Prob. Between Iceberg         Trawler 
Trawler 
and Net 1 

0-20 None            None None 

20-40 None            None None i 
40-60 None            Tl None 

60-80 
80-100 

I              Tl 
I              Tl 

None 
N 
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6. RELEVANT ISSUES IN SYSTEM EVALUATION 

6.1 Objectives 

The objectives of the experimental programs correspond to three 

phases of investigation and development of the Expected Utility Decision 

Aiding concept. 

The objectives of the three phases of investigation are: 

1. Validation of dynamic utility assessment. 

2. Characterization of system sensitivity to DM behavior. 

3. Optimization of DM behavior through aiding. 

The first objective essentially consists of demonstrating that the 

model is capable of predicting DM behavior with a reasonable degree of 

accuracy in the absence of any aiding to DM. The second objective is 

achieved by demonstrating the model's sensitivity to individual DM values 

and/or to the organizationally imposed task values. The third objective 

is demonstrated by showing increases in DM's consistency tnd performance 

when he is provided with various aiding information in a form that allows 

him to overcome some of his limitations. 

The first two objectives are of immediate concern since they provide 

the primary validation of the approach. The emphasis during the initial 

phases will be investigation of the task related variables discussed 

below. Once the basic soundness of the approach has been demonstrated, 

emphasis will be shifted to the system interface variables that influence 

man-machine interaction with the goal of optimizing system performance. 

6.2 Validation of the Model 

The demonstration of the convergence of the utility matrix will validate 

the on-line estimated utility model. Because the adaptive utility estimates 

are adjusted to reflect the operator's decisions, the utilities, by definition. 
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correlate with those decisions. The degree of correlation is inversely 

proportional to the variance of the estimated utilities. Thus, a stable 

utility matrix reflects a high correlation with a consistent EU decision 

strategy. The demonstration of convergence of the utility matrix is an 

example of construct validity with the operator's decisions used as the 

comparison standard. 

6.3 Factors Affecting Utility Estimates and Convergence 

The factors affecting utility estimates and convergence may be 

divided into two categories: task related variables and system interface 

variables. Task related variables include: 
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1. Organizational or institutional values. 

2. Sensor characteristics. 

3. Interrelationsnip of environmental events. 

4. Operator access to environmental information. 

The organizational or institutional values relate to budget, importance 

of objects and events and allowable false alarm rate for the system. These, 

in turn, are related to the sensor characteristics of cost, object speci- 

ficity, and false alarm rate. The effect of such external values are 

studied by using indoctrination and debriefing techniques that impose re- 

straints and/or emphasis on various aspects of the operator's task. These 

institutional values act as driving functions that guide the operator's 

behavior to a consistent If.vel. They differentially affect the utilities 

associated with specific sensor types. 

The characteristics of the sensors (specificity, cost, false alarm 

rate) affect the degree to which a given sensor type contributes to task 

accomplishment in relation to other sensor types. The extent to which the 

degree of effectiveness among sensor types may be discriminated by the 

operator with given organizational values will effect the consistency of 
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his decisions and thus the degree of convergence of the operator model. 

If the characteristics of the sensors in relation to a specific task are 

such that the differential effectiveness among sensor types is not 

apparent to the operator, then his choices of sensor deployment will be 

less consistent.    If the discriminability of sensor effectiveness is high, 

the operator's alternatives are less equivocal, thus facilitating decision 

consistency. 

The greater the degree of predictive interrelationship of environmental 

events, the rreater the potential cues on which to base decisions.    Random- 

ness of the environmental elements precludes cognitive structuring by the 

decision maker and contributes little toward operator consistency. 

Potentially, the interrelationships of the environr :ntal elements may 

provide information germaine to the decision process.    However, DM's access 

to this information is determined in the most part by the successful 

deployment of sensors.    The extent to which D" is able to gain access to 

'.hese predictive relationships is an important determinant of consistent 

operator behavior. 

6.^   Man/Computer Performance 

The third phase objectives of improving human decision making 

capabilities involves the investigation of variables that effect human 

information processing in manned systems. 

These system interfaces relate to the man-machine interaction and 

include: 

1. Aiding information 

2. Attitudinal factors 

3. Degree of Apparent Control 

A major machine oriented variable is the type and configuration of 

aiding information that would be provided to improve disability in a dynamic- 

complex decision environment. 
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Information generated by the model may be used to aid the decision 

maker in several ways; these include: I 

1. Recommending sensor deployment based on the EL) model of operator 

behavior. 

2. Emphasizing important environmental events as determined from 

previous operator responses. 

3. Calling attention to inconsistencies in value structure to 

prompt selective reevaluation of the action and to motivate 

consistent behavior. 

Once the basic validity of the dynamic utility assessment approach is 

demonstrated, the effectiveness of the various aiding techniques will be 

investigated in terms of the stability of tne operator's decision making 

behavior. 

The major operator variables of interest that would affect convergence 

are attitudinal and situational variables that bias human interaction with 

machine components in a man-machine system. Consider the case in which 

the operator has learned to play the fishing fleet game when the only 

aiding being given is the intelligence report. When the aiding is intro- 

duced after the operator has reached steady state performance it will be 

met with a variety of reactions related to the operator's initial attitude 

concerning computerized systems. With an initially strong positive 

attitude it is expected that the operator would accept the aiding readily 

and the u-matrix would become stable. With a negative initial attitude 

the aiding would be rejected and u-matrix stability would be retarded. 

In the first case, with strong positive attitude, if the system performance 

decreased as a result of accepting aiding, the positive attitude may be 

replaced by a negative attitude and instability would result. 

In the absence of strong initial attitudes it is expected that 

situational variables would influence operator behavior to a greater extent. 

The perceived amount of control over the decision processes utilized by 
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the aiding mechanism or the operator's understanding and agreement with 

the decision logic used is an important situational variable (Hanes and 

Gebhard, 1966). This variable may be manipulated in indoctrination 

procedures which give differential training on the nature of the adaptive 

process. It is expected that the perception of apparent control by the 

indoctrinated group will result in more frequent acceptance of aiding and 

concurrently a more stable u-matrix. It is also hypothesized that if 

system performance decreases with the acceptance of aiding, there will be 

a greater tendency in the indoctrinated group to continue to accept the 

aiding rather than reshaping the u-matrix. 

6.5 Initial Experimentation 

The operational experiment described in Section 5.7 provided an 

examination of the convergence of the utility matrix given operator 

behavior that is consistent with the probabilities stated in the 

intelligence report. However, operator behavior may not necessarily 

reflect such a system-internal consistency. Thus it is necessary to 

examine the convergence of the utility matrix given operator behavior 

which is consistent with imposed organizational rules and values. In 

this instance, operator behavior will not be entirely consistent with the 

Intelligence report probabilities since the>e probabilities do not reflect 

false alarm sensor errors. These errors cause the operator to revise 

sensor deployment decisions based upon expected subsequent sensor outputs, 

rather than based strictly upon the intelligence report probabilities. 

The current investigation include: the examination of utility matrix 

convergence, given operator behavior consistent with imposed rules of 

decision strategy. Several system-naive subjects are included in the 

investigation to provide a measure of system stability across decision 

strategies. 
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